4,501 research outputs found

    Monthly and Diurnal Variability of Rain Rate and Rain Attenuation during the Monsoon Period in Malaysia

    Get PDF
    Rain is the major source of attenuation for microwave propagation above 10 GHz. In tropical and equatorial regions where the rain intensity is higher, designing a terrestrial and earth-to-satellite microwave links is very critical and challenging at these frequencies. This paper presents the preliminary results of rain effects in a 23 GHz terrestrial point-to-point communication link 1.3km long. The experimental test bed had been set up at Skudai, Johor Bahru, Malaysia. In this area, a monsoon equatorial climate prevails and the rainfall rate can reach values well above 100mm/h with significant monthly and diurnal variability. Hence, it is necessary to implement a mitigation technique for maintaining an adequate radio link performance for the action of very heavy rain. Since we now know that the ULPC (Up Link Power Control) cannot guarantee the desired performance, a solution based on frequency band diversity is proposed in this paper. Here, a secondary radio link operating in a frequency not affected by rain (C band for instance) is placed parallel with the main link. Under no rain or light rain conditions, the secondary link carries without priority radio signals. When there is an outage of the main link due to rain, the secondary link assumes the priority traffic. The outcome of the research shows a solution for higher operating frequencies during rainy events

    Modeling the input history of programs for improved instruction-memory performance

    Full text link
    When a program is loaded into memory for execution, the relative position of its basic blocks is crucial, since loading basic blocks that are unlikely to be executed first places them high in the instruction-memory hierarchy only to be dislodged as the execution goes on. In this paper we study the use of Bayesian networks as models of the input history of a program. The main point is the creation of a probabilistic model that persists as the program is run on different inputs and at each new input refines its own parameters in order to reflect the program's input history more accurately. As the model is thus tuned, it causes basic blocks to be reordered so that, upon arrival of the next input for execution, loading the basic blocks into memory automatically takes into account the input history of the program. We report on extensive experiments, whose results demonstrate the efficacy of the overall approach in progressively lowering the execution times of a program on identical inputs placed randomly in a sequence of varied inputs. We provide results on selected SPEC CINT2000 programs and also evaluate our approach as compared to the gcc level-3 optimization and to Pettis-Hansen reordering

    Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension

    Get PDF
    We report local roughness exponents, αloc\alpha_{\text{loc}}, for three interface growth models in one dimension which are believed to belong the non-linear molecular-beam-epitaxy (nMBE) universality class represented by the Villain-Lais-Das Sarma (VLDS) stochastic equation. We applied an optimum detrended fluctuation analysis (ODFA) [Luis et al., Phys. Rev. E 95, 042801 (2017)] and compared the outcomes with standard detrending methods. We observe in all investigated models that ODFA outperforms the standard methods providing exponents in the narrow interval αloc[0.96,0.98]\alpha_{\text{loc}}\in[0.96,0.98] consistent with renormalization group predictions for the VLDS equation. In particular, these exponent values are calculated for the Clarke-Vvdensky and Das Sarma-Tamborenea models characterized by very strong corrections to the scaling, for which large deviations of these values had been reported. Our results strongly support the absence of anomalous scaling in the nMBE universality class and the existence of corrections in the form αloc=1ϵ\alpha_{\text{loc}}=1-\epsilon of the one-loop renormalization group analysis of the VLDS equation

    Poynting Vector Flow in a Circular Circuit

    Full text link
    A circuit is considered in the shape of a ring, with a battery of negligible size and a wire of uniform resistance. A linear charge distribution along the wire maintains an electrostatic field and a steady current, which produces a constant magnetic field. Earlier studies of the Poynting vector and the rate of flow of energy considered only idealized geometries in which the Poynting vector was confined to the space within the circuit. But in more realistic cases the Poynting vector is nonzero outside as well as inside the circuit. An expression is obtained for the Poynting vector in terms of products of integrals, which are evaluated numerically to show the energy flow. Limiting expressions are obtained analytically. It is shown that the total power generated by the battery equals the energy flowing into the wire per unit time.Comment: 19 pages, 8 figure
    corecore